(1)

If a < 0, then $ax^2 + bx + c = 0$ MUST / MAY / CAN'T have real roots.

(2)

If $b^2-4ac=0$, then $ax^2+bx+c=0$ MUST / MAY / CAN'T have one repeated real root.

(3)

If $ax^2+bx+c=0$ has no real roots, then $ax^2+bx-c=0$ MUST / MAY / CAN'T have two distinct real roots.

(4)

If $\frac{b^2}{a} < 4c$, then $ax^2 + bx + c = 0$ MUST / MAY / CAN'T have two distinct real roots.

(5)

If b=0, then $ax^2+bx+c=0$ MUST / MAY / CAN'T have one repeated real root.

6

The equation $ax^2 + bx + c = 0$ MUST / MAY / CAN'T have three real roots.

 $\overline{(7)}$

If c = 0, then $ax^2 + bx + c = 0$ MUST / MAY / CAN'T have real roots.

(8)

The equation $ax^2+bx+c=0$ MUST / MAY / CAN'T have the same number of real roots as $ax^2-bx+c=0.$

9

If $ax^2+bx+c=0$ has two distinct real roots, then we MUST / MAY / CAN'T have $ac<\frac{b^2}{4}$.

(10)

If c>0, then $ax^2+bx+c=0$ MUST / MAY / CAN'T have two distinct real roots.

(11)

The equation $ax^2+bx+c=0$ MUST / MAY / CAN'T have the same number of real roots as $cx^2+bx+a=0.$

(12)

If $ax^2 + bx + c = 0$ has no real roots, then $-ax^2 - bx - c = 0$ MUST / MAY / CAN'T have two distinct real roots.